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1 INTRODUCTION 

For accurate radar cross section (RCS) or antenna pattern measurements, 

one should illuminate the scattering body or antenna under test with a 

plane wave. A compact range is an electromagnetic system used to simulate 

the plane wave. In a compact range, a paraboloid is normally used as the 

main reflector which converts the spherical wavefront of a point source lo- 

cated at the focal point of the paraboloid into a planar wavefront. However, 

since a finite size reflector is used in a compact range, there are diffracted 

fields which emanate from the rim of the reflector. These diffracted fields 

distort the planar wavefront and lead to erroneous measurements. In order 

to reduce the diffracted fields, various edge terminations have been investi- 

gated such as absorber material [l], serrated edges [2,3], shaped reflectors 

[4] and rolled edges [5].  Among these approaches, rolled edge terminations 

can provide the lowest diffracted fields for a given size reflector. Using the 

rolled edge concept, an elliptical or some similar convex surface is added to 

the paraboloid along its rim such that the surface is smooth and continuous. 

The addition of the rolled edge reduces the magnitude of the discontinuity 

in the specular reflected field as the specular point moves from the parabola 

onto the rolled edge. This in turn reduces the edge diffracted fields coming 

from the termination of the parabola. Also, since the specular reflection 

from the rolled edge is directed away from the potential target zone, it does 

not distort the planar wave front. 
_. 

The original elliptical rolled edge [5] had a large discontinuity in the 
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reflected fields across the junction between the parabola and the rolled 

edge. This discontinuity resulted from the fact that the radius of curvature 

of a compact range reflector with a simple rolled edge is discontinuous at 

the junction between the paraboloid and the rolled edge. To decrease the 

discontinuity in the radius of curvature, one can increase the semi-major 

ax is  of the ellipse (a,) and/or decrease the semi-major ax is  of the ellipse 

( b e ) .  An increase in a,, will, however, make the rolled edge too large; while, 

a decrease in be will make the rolled edge termination look like a knife edge, 

especially at low frequencies, which is undesirable. Thus, a, and tr, should 

be chosen such that the  total height of the reflector is within a specified 

limit and the minimum radius of curvature of the rolled edge is at least one 

fourth of a wavelength at the lowest frequency of operation. This choice of 

a, and be will satisfy the design constraints but may lead to diffracted fields 

(from junction between the rolled edge and the paraboloid) which are too 

large for certain applications. 

Recently, Burnside et al. [6] introduced the concept of blended rolled 

edges, which further reduces the diffracted fields. In a blended rolled edge, a 

part of the elliptical rolled edge is blended with an extension of the parabola 

to form the rol9e-d edge. The blending is done such that the rolled edge 

looks like the parabola near the junction and like the ellipse at the other 

end. Pistorius [7] showed that with a blended rolled edge one can make 

the radius of curvature and a certain number of its derivatives continuous 

across the junction, which in turn leads to very small diffracted fields. 

Again, one should choose the blended rolled edge parameters such that the 

.. 
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design constraints of the maximum total height and the minimum radius of 

curvature are met. It can be shown that in the case of a blended rolled edge 

there is infinite sets of parameters which satisfy these design constraints. 

One would normally like to choose the values which minimize the diffracted 

fields. In this paper, a method to find the optimum rolled edge parameters is 

given. The method is applicable to arbitrary rim shape reflectors which may 

be center-fed (the center of the reflector is on the axis of the paraboloid) 

or offset-fed. The design procedure leads to a reflector which is smooth 

and continuous and satisfies the constraints regarding the reflector size and 

the minimum radius of curvature. Using the design procedure, blended 

rolled edge for an offset-fed concave edge (81 reflector is designed. The 

performance of the reflector in terms of the scattered fields in the target 

zone is also presented. 

The rest of the paper is organized as follows. In section 11, the con- 

cept of blended rolled edges as applied to two dimensional reflectors is 

presented. In section 111, a method to select rolled edge parameters for 

two dimensional systems is discussed. In section IV, the rolled edge plane 

for three-dimensional reflectors in defined and analytic expressions for the 

whole reflector surface (including blended rolled edges) are given. Section 

V contains a design example. Finally, section VI contains a summary and 

general conclusions. 

3 
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Figure 1: Parabola and rolled edge coordinate system. The junction is 
located at p = pj. 

2 BLENDED ROLLED EDGE CONCEPT 

Let a parabola of focal length F be defined in the (PZ) plane as shown 

Figure 1. Then the defining equation for the parabola is given by 
z = p2/4F . (1) 

4 
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defined as (see Figure 1) 

3, = z p 2 i  + z p 3 z  A 9 and 

where 

* 
2 112 

z p 2  = 2 F / ( p i  + 4F ) 

YP2 = pj / (p i  + 4F2)'/' , and (6) 

(7) 
-2F/(p i  + 4F 2 ) 112 . 

YP3 = 

Note the ite is the tangent to the parabola at the junction point, and $, is 

the outward normal to the parabola at the junction point. Using Equations 

(4) - (7), the coordinate transformation between the (z,,y,) system and the 

( p ,  z )  system is given by 

where z, = p j / 4 F .  In the rolled edge coordinate system, the equation of 

the ellipse, as shown in Figure 2, is given by 

z,(y) = a,siny , and (9) 

5 



Figure 2: Elliptical rolled edge parameters. 

.. 
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where a, is the semi-major ax is  of the ellipse, be is the semi-minor ax is  of 

the ellipse and y is a parametric angle such that 0 5 7 5 ^fin. Note that 

rrn defines how much of the ellipse is used as the rolled edge. Normally 

105" 5 'yrn 5 180". It is obvious that the choice of -yrn does not affect a, and 

be. In the (p ,z )  coordinate system, the coordinates of the elliptical rolled 

edge are given by 

Note that the total surface is given in two parts. For p 5 pj ,  the surface is 

a parabola as defined in Equation (1) while for p > pi ,  the surface is given 

by Equations (11) and (12) as function of the parametric angle, y. One 

can show the surface defined by (1) and (11) and (12) has a discontinuity 

in the radius of curvature at the junction point ( p j ,  z j ) .  This discontinuity 

can lead to significant diffracted fields whose magnitude may be too large 

for certain applications. To reduce the diffracted field level, one may want 

to use a blended rolled edge. A blended rolled edge as shown in Figure 

3, is generated by blending the elliptical rolled edge with an extension of 

the paraboloid. The equation of the blended rolled edge [7,8] in the ( p , z )  

coordinate system is then given by 

7 
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Figure 3: Blended rolled edge parameters. 
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where Pparaaa and zpclroaa are the coordinates of the extended parabola 

and b ( 7 )  is the blending function. The blending function varies between 

(0,1] such that b(0)  = 0 and b(7,) = 1. The extended parabola used in the 

blending is defined as 

where x, defines the section of the parabola used in blending (see Figure 

and (16) into (13) and (14), one obtains 3). Substituting (ll), (12), (15 

and 

Again the total surface is given in two parts. For p 5 pi ,  the surface is a 

parabola as defined in Equation (1); while for p 2 p,, the surface is given 

by Equations (17) and (18) as a function of the parametric angle, 7. Note 

that for a given junction height ( p j )  and focal length (F), one can choose 

ae,be,x, and 7, to satisfy various design constraints. In our application, 

*. 
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there are two design constraints. One is that the total size (height) of 

the reflector should not exceed a specified limit, and the other is that the 

minimum radius of curvature of the rolled edge should not be less than 

XJ4, where A, is the wavelength at the lowest frequency of operation. It 

can be shown that there is a infinite set of values ac,be, t, and 'y, which 

will satisfy these two constraints. One wants to select the combination 

which will lead to the minimum diffraction from the junction between the 

blended rolled edge and the parabola. One way to do so is the cut and try 

approach which can be very time consuming and expensive. An efficient 

method of selecting the rolled edge parameters is given below. 

3 METHOD TO SELECT THE ROLLED 
EDGE PARAMETERS 

Let the blending function be chosen such that its first n - 1 derivatives are 

zero at the junction and its nth derivative is non-zero; i.e., 

(19) 
b " ( O ) = O ,  m = 0 , 1 , 2  ,... n - 1  

and 
b"(0) # 0 

Let us cal l  such a function an nth order blending function. A list of such 

functions is given in [7]. For an nth order blending function, it can be shown 

[7] that the radius of curvature of the surface and its first n - 1 derivatives 

are continuous across the junction. The discontinuity in the nth derivative 

of the radius of curvature is given by 

10 



where 

and a is a constant which depends on the type of blending function. Note 

that by selecting a proper combination of a,, be, t m  and rm, one can make 

en also equal to zero. This will lead to a smoother surface which in turn 

should reduce the diffracted field magnitude. Thus, one should choose 

the rolled edge parameters such that e: is minimized, while satisfying the 

design constraints regarding the maximum height and minimum radius of 

curvature. Let hmm be the maximum allowable height of the reflector, and 

A, be the wavelength corresponding to the minimum frequency of operation. 

Then the constraint under which e: should be minimized can be written as 

and 

where h is the total height of the reflector, and R,h is the radius or curvature 

of the blended rolled edge at the incident shadow boundary'. One can use 

the method of Lagrange Multipliers to minimize the error (e:); i.e., one can 

optimize the following function: 

_. With a source at the focus of the reflector, one can find the incident shadow boundary 
on the reflector surface. One can also show that the radius of curvature of the blended 
rolled edge is minimum near the incident shadow boundary. 
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where L1 and L2 are the Largrange multipliers. A computer program was 

written to optimize f using the conjugate gradient method. It was found 

that one can fix 7m and vary a,, be and z, to minimize f. For all d u e s  of 

T ~ ,  the minimum value of f was approximately the same. Thus, ym can be 

fixed between 105" to 180" (depending upon how much the surface needs 

to be rolled over to allow the creeping wave to propagate around the rolled 

edge without diffraction) and other parameters can be found. F'urther, it 

was also observed that f is not a very well behaved function in the sense that 

it has a lot of local minima. Thus, optimizing f is not a trivial task. Then, 

as for any optimization problem, a study of the error (E:) was done. It was 

found that for a given reflector, while keeping 7,,, constant, if one computes 

as a function of a, when be and z, are chosen such that the constraints 

regarding the total height (22) and minimum radius of curvature (23) are 

met, one obtains a curve similar to the one shown in Figure 4. Note that 

for large values of a,, the error term increases very rapidly with an increase 

in a,; while for small values of a,, the increase in the error term is rather 

slow. Thus, if one chooses a value of a, which is smaller than its threshold 

value, as shown in Figure 4, and then chooses be and 2, to satisfy the 

two constraints, one will obtain a well designed rolled edge without going 

through the optimization process. As pointed out before, 7,,, can be chosen 

anywhere between 105" and 180". This approach is illustrated below for a 

24 foot focal length reflector. 

r .  
Let us design a blended rolled edge for a 24 foot focal length reflector. 

The rolled edge is to be added at a height of 15 feet (p j  = 15') and the 

12 
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to satisfy the two constraints. 

13 I 
I 



Figure 5: Error ( e t )  versus a, for a 24 foot focal length reflector. pj = 15', 
rolled edge height=5', minimum frequency = 1 GHa, cosine blending. 

height of the ro1M edge is limited to 5 feet. Thus, the maximum height 

of the reflector is 20 feet. Figure 5 shows a plot of the error term for this 

reflector versus a,. The minimum freqnency of operation is assumed to be 

1 GHz and the blending function is assumed to be a cosine function defined 

b ( 7 )  = ; (1 - cos (2)) . 
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Table 1: Rolled Edge Parameters for 7,,, = 120". F = 24', pj = 15', 
hmm = 20', minimum frequency = 1 GHz, cosine blending. 

a, (feet) 
0.1 
0.5 
1 .o 
2.0 
3.0 
4.0 
4.5 

be (feet) 
4.87007 
4.43831 

3.888939 
2.865024 
1.927935 
1.1 75862 

0.9074122 

2, for a given value of a, 

x ,  (feet) 
18.98664 
18.59340 
18.02378 
16.61 134 
14.84003 
12.35277 
10.38024 

h (feet) 
20.00054 
20.01 333 
20.01859 
20.00730 
19.99959 
20.00961 
20.01350 

Rah (feet) 
0.2458531 
0.2464865 
0.2453696 
0.2470564 
0.2458463 
0.2454030 
0.2451355 

en 

11.41249 
11.52695 
11.76930 
13.12331 
16.02044 
26.12852 
47.53848 

were chosen to meet the two design constraints. 

Plots for various values of 7, are given. Note that for small values of 

a, (below its threshold value), the error term increases very slowly with 

an increase in a, and for all values of 7,,, the minimum value of the error 

term is approximately equal. Table 1 shows the rolled edge parameters 

corresponding to 7, = 120" in Figure 5. Note that for all combinations 

of the rolled edge parameters, the total height of the reflector and R,h are 

approximately equal to the specified values. 

Figure 6 shows the junction diffracted fields for some combinations of the 

rolled edge parameters given in Table 1. The diffracted fields are computed 

in front of the reflector at a t distance of 50 feet. The reflector is assumed 

to be lit by a magnetic line source located at the focal point of the reflector. 

The frequency of operation is assumed to be 1 GHz. Corrected PO (9,101 
.. 
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Figure 6: Junction diffracted fields for a 24 foot focal length reflector for 
various rolled edges. Frequency = 1 GHe, z-displacements=50' and a mag- 
netic line source feed. 
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Table 2: Rolled Edge Parameters for various junction heights. 7, = 120". 

pj (feet) a, (feet) be (feet) z, (feet) h (feet) 
-5 1.0 3.765737 18.27391 0.008 

F = 24', minimum frequency = 1 GHz, cosine blending. 

a 

7.181152 
0. 
5 
10 
15 
20 
25 

1 .o 
1 .o 
1 .o 
1 .o 
1.0 
1 .o 

3.870553 
3.921 287 
3.929029 
3.888939 
3.814528 
3.7091 14 

17.94477 
17.80901 
17 32422 
18.02378 
18.40553 
18.97642 

5.01 1628 
10.01928 
15.01 887 
20.01859 
25.01853 
30.02068 

7.786 724 
8.659282 
10.00087 
11.76930 
14.03492 
16.751 88 

was used to compute the total scattered fields of the reflector. To obtain 

the junction diffracted fields, the specularly reflected fields (GO term) were 

subtracted from the total scattered fields. Note that the magnitude of the 

junction diffracted fields decreases with a decrease in a,. However, for small 

values of a, (below threshold), the improvement is very marginal. Thus, 

if the rolled edge parameters are chosen corresponding to the values of a, 

which are smaller than its threshold value, one obtains a good set of rolled 

parameters and can avoid the optimization process. 

An important point that should be mentioned here is that the optimum 

rolled edge parameters depend on the junction height. For example, Table 

2 shows the rolled edge parameters when the junction height ( p i )  is varied. 

All other parameters are the same as before. The height of the rolled edge 

is still limited to 5 feet. Note that be and z, varies with the junction height 
-. 
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and so does the error term (e:). Thus, if the junction height is changed one 

should obtain a new set of rolled edge parameters. Blended rolled edges for 

3-dimensional reflectors are discussed next. 

4 BLENDED ROLLED EDGES FOR 3-D 
REFLECTORS 

Let a paraboloid of focal length F be defined in the (xyz) coordinate system 

as shown in Figure 7. Then the defining equation for the paraboloid is given 

by 

x2 + y2 
4F Z =  

A section of this paraboloid is used as the main reflector for a compact 

range application. The reflector can have any rim shape. Let us call this 

rim the ‘junction contour’. If one wishes to add a blended rolled edge to 

this reflector, he should make sure that the total surface of the reflector 

is smooth and continuous. Therefore, the choice of the rolled edge plane 

for various points on the junction contour is very important. Such a plane 

is described below. If the rolled edge is added in this plane one obtains a 

unique (single valued) surface which is smooth and continous. This rolled 

edge plane is applicable for center-fed as well as offset-fed compact range 

reflectors. 

Let (z,,~, yovg, z,,~) be the center of the main reflector. Note that for 

a center-fed system, the center of the reflector coincides with the origin of -. 

I 
1 
1 
I 
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Figure 7: Paraboloid coordinate system and the junction contour for a 
compact range reflector. 
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the (zyz) coordinate system. Further, 

zoug = + Y:~~) 14* 

Let us define a new coordinate system (z'y'r') whose origin is the center 

of the main reflector. Note that the new coordinate system is obtained by 

translating the original coordinate system, and the transformation between 

the two coordinate systems is given by 

y = y'+youg, and - 
x = 2' + xoua 

z = z' + zoug 1 
Next a cylindrical coordinate system ( p ' q z ' )  with its origin coinciding with 

the origin of the (z'y'z') coordinate system can be defined, as shown in 

Figure 8. Note that the transformation between the (x'y'z') and the (p'#z') 

coordinate system is given by 

2' = Q' COS @ 
y' = p'sintf 
z' = z' 

Let p i ( @ )  be the junction contour of the reflector in (p'@z') coordinate sys- 

tem. Then the defining equation of the parabolic part of the main reflector 

is 

Note that for most of the reflector surfaces pg(4') is a single valued function 

of 4'. Then if for a given point on the rim (4' is fixed), the rolled edge is 

20 
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Figure 8: Various coordinate systems. (t,u8,yau8,~,ug) is the center of the 
compact range reflector. 
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added in p'z' plane, the total surface will be smooth and continuous. Also if 

the junction contour is a single valued function of 4', which is normally true, 

the rolled edge surface will be unique. Once the rolled edge plane is defined, 

one can use the method outlined in Section I1 to add the rolled edge; while, 

the method outlined in Section 111 can be used to obtain the rolled edge 

parameters. However, to use the method given in Sections I1 and 111, part 

of the paraboloid which lies in the p'z' plane (the rolled edge plane) should 

be a parabola and one should know the focal length of the parabola and the 

junction height. As shown below, the part of the paraboloid in the rolled 

edge plane is a parabola, and it is trivial to find junction height and the 

focal length of the parabola. Let us assume that the rolled edge is added 

at a point corresponding to 4' = 4;. Then the equation of the part of the 

paraboloid in the rolled edge plane becomes 

Note that Equation (31) represents a parabola of focal length (F). The 

vertex of the parabola is at 

Thus, the junction height in the rolled edge plane, as shown in Figure 9, is 

-. Now one can use the procedure outlined in the last two sections to add 

the rolled edge and obtain the rolled edge parameters. Note that since the 
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Figure 9: The section of the paraboloid in the rolled edge plane ($2'). Ver- 
tex of the equivalent parabola coincides with the origin of (p"z") coordinate 
system. 
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height of the junction, p[i’, may vary with t#~i? the rolled edge parameters 

will vary with 4;. From Section 11, the rolled edge in the (p’z’) coordinate 

system is defined by 

and 

where 

(37) xp2 = 2F/(pY + 4 F  2 ) 112 

Xp3 = p[i’/(p’’ + 4F2)’I2 , and (39) 

(40) Yp3 = -2F/(p? + 4 F  2 ) 112 

Thus, the whole surface is defined analytically in the (p‘#z’) coordinate 

system. For given #, Equation (30) defines the surface for p’ 5 p i ( # ) ;  while 
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for p > p i ( # ) ,  Equations (34) and (35) define the surface as a function of 

parametric angle, y. 

Next, a blended rolled edge for a concave rim reflector [7,8] (see Ap- 

pendix) is designed. The focal length of the reflector is 7.25 feet, and the 

reflector is offset in the y direction by 8.5 feet; i.e., zaVg = 0 and yavo = 8.5'. 

The scattered fields of the reflector in the target area are also computed. 

5 DESIGN EXAMPLE 

Figure 10 shows the front view of the junction contour of the reflector. Note 

that the junction contour is concave in shape. Equations defining a concave 

rim reflector are given in the Appendix. The reflector is symmetric about 

the y a x i s  and the target zone extends from -4' to 4' in the 2-direction 

and from 5.5' to 11.5' in the y-direction. Figure 11 shows the height of the 

junction in the rolled edge plane (p'z') versus 4'. Note that the junction 

height varies with qS and goes from a large positive value to a large negative 

value. However, the variation is quite smooth and reasonable. Thus, one 

can optimize the rolled edge parameters for a few points around the rim 

and then use interpolation for the rest. Figure 12 shows the total reflector 

surface obtained using this process. The rolled edge height is limited to 

3.5 feet and the concavity parameters, T, (see Appendix), is also chosen to 

be 3.5 feet. The minimum frequency of operation is assumed to be 2 GHz. 

A cosine squared blending function [7] is used to blend the elliptical rolled 
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Figure 10: Front view of the junction contour of a concave edge compact 
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Figure 11: Junction height versus 4' for the concave edge reflector. 

.. . 
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S I  
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Figure 12: Front view of the concave edge reflector with cosine squared 
blended rolled edges. Rolled edge height = 3.5’, minimum frequency = 2 
GHz. 
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I 
1 
I 
1 Table 3: Rolled Edge Parameters for the Concave Edge Reflector. F = 7.25 - 

feet, minimum frequency = 2 GHz, cosine squared blending. 

q5' (deg.) I a, (feet) 
90" 
118" 

139.0856" 
160" 
180" 
200" 
216" 

220.9 144" 
226.0" 
234.0" 
250.0" 
270.0" 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

b, (feet) 
2.7984 
2.8128 
2.7396 
3.2809 
3.6719 
3.9026 
3.9620 
3.9574 
4.0061 
3.9897 
3.8700 
3.7929 

zm (feet) 
10.8642 
10.8162 
10.9962 
9.6723 
9.0867 
8.9810 
9.0146 
9.0111 
9.0927 
9.3187 
9.8004 
10.0663 

edge and the paraboloid. The function is defined as 

2 1 
b(y) = - 4 (1 - cos 2) . 

7m (deg-1 
105" 
105" 
105" 
105" 
105" 
105" 
105" 
105" 
105" 
105" 
105" 
105" 

It can be shown that the function is a fourth order blending function. Note 

that the total reflector surface is smooth and continuous. The whole reflec- 

tor fits in a 15' x 13' rectangle and is symmetrical about the y-axis. Table 

3 shows the rolled edge parameters for a few points along the junction con- 

tour. Recall that for other points the rolled edge parameters were obtained 

by interpolation. Since the reflector is symmetric about the y-axis, the 

rolled edge parameters are only given for 90" 5 4' 5 270". 
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Figure 13: Scattered fields of the concave edge reflector in the target zone 
along two vertical cuts. z-displacement = 20‘, Frequency = 2 GHz, Subre- 
flector feed. 

Figure 13 shows the scattered fields for this reflector along two vertical 

cuts. The frequency of operation is 2 GHz, and the z-displacement for the 

fields cuts is 20‘ from the vertex of the paraboloid. The 2-displacements 

for the two vertical cuts is 0’ and 3’’ respectively. The reflector is assumed 

to be illuminated by an elliptical subreflector (Gregorian System). The 

subreflector ax is  and the feed were tilted such that the cross-polarization 

for a Huygen’s source feed is zero (111. The subreflector parameters are 

.. 
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Figure 14: Scattered fields of the concave edge reflector along three hori- 
zontal cuts. z-displacement = 20', Ftequency = 2 GHz, Subreflector feed. 

ad = 5.25', bd = 4.308', ,8 = 5.5" and (Y = 20" (121. Corrected Po [lo] is 

used to compute the scattered fields. For 2 = 3', the fields are displaced 

by -0.2 dB so that the two results can be seen in isolation of each other. 

For comparison, the GO field level is also shown in the figure. Note that 

in most of the target zone, the ripple in the scattered fields is less than 0.1 

dB, which is excellent for even the most stringent applications. 

Figure 14 shows the scattered fields along three horizontal cuts (y = 6.5', 

8.5' and 10.5'). All other parameters are the same as 

and 10.5' field cuts, the scattered fields are displaced 

-. 
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dB, respectively. Since the reflector system is symmetrical about the y- 

axis ,  the scattered fields only for positive values of z are computed. For 

comparison, GO field levels are also plotted in the figure. Again, in most 

of the target zone; the ripple in the scattered fields is less than 0.1 dB, 

which is very good. Thus, the design procedure leads to blended rolled 

edges which cause very small junction diffracted fields in the target zone. 

6 SUMMARY AND CONCLUSION 

A method to obtain optimum rolled edge parameters for elliptical blended 

rolled edges was given. The method ensures that the total height of the 

reflector does not exceed the specified value and the minimum radius of 

curvature of the reflector meets the requirement at the lowest frequency of 

operation. The method also guarantees small diffracted fields. 

A procedure to add blended rolled edges to arbitrary rim shaped 3- 

dimensional compact range reflectors was also given. The procedure is 

applicable to center-fed as well as offset-fed reflectors and leads to rolled 

edges with minimal surface discontinuities. Using the procedure, the whole 

reflector surface ran be defined analytically using simple expressions. It was 

demonstrated that the design procedure leads to reflector surfaces which 

have very small diffracted fields emanating from the junction between the 

paraboloid and the rolled edge surface. 
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APPENDIX 

Let the desired target zone extend from qeft to 2right in the 2-direction 

and from ybtt,,,,, to yttop in the y-direction. Then a concave edge is formed 

by the locii of points that are a radial distance re away from the border of 

a rectangle (defining rectangle) which extends from Zleft - r e  to Zright + r e  

in the 2-direction and from ybttom - re to ytap + re in the y-direction [7,8], 

as shown in Figure 15. The coordinates of the points on the concave edge 

contour are given by 

 right + re( 1 - COS 4') 
zawg +  top + r e  - yaug) cot 4' - T e  COS 4' 

e lef t  - r e (  1 + COS 4') 
zawg + (Ybottom - r e  - youg) cot 4' - r e  COS 4' 

ztight + re (  1 - COS 4') 

O I V I 4 1  
$1 I 4 I 42 
4 2  I & 5 4 3  

43 I # I 4 4  

4 4  5 4' 5 360" 

zj = 

where 
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For a concave rim re should be positive. Note that the parameter re controls 

the concavity. The concavity increases with an increase in re. It can be 

shown that if re is chosen to be equal to the height of the rolled edge, the zy 

projection of the main reflector source (including rolled edge), will extend 

from qeft -re to z,ight +re in the x direction and from ybttom -re to ytq + re 

in the y direction. If re = 0, one gets a rectangular rim. For re < 0, one 

obtains a convex rim (see Figure 15). 

I 
I 
I 
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